
AD 

CD 

rp (nie.''•■•• 
^■y-..:.'r?,\:!Vc:r 

R(.( • 
CLEARINGHOUSE 

echmcal 
Spring1 ■        .       22151 

c 
Wotertown,Massachusetts 02172 



AMMRC TR 68-04 

ROOM TEMPERATURE STRENGTH OF PYROLYTIC 
GRAPHITE AS AFFECTED BY MICROSTRUCTURE 
AND BORON CONTENT 

Technical Report by 

SAMUEL J. ACQUAVIVA and R. NATHAN KATZ 

February 1968 

This document has been approved for public 
release and sale; its distribution is unlimited. 

D/A Project 1C024401A330 
AMCMSCode 5025.11.296 

Ceramic Materials Research for Army Materiel 
Subtask 38075 

ARMY MATERIALS AND MECHANICS RESEARCH CENTER 
WATF.RTOWN. MASSACHUSETTS  02172 



! 

ARMY MATERIALS AND MECHANICS RESEARCH CENTER 

ROOM TEMPERATURE STRENGTH OF PYROLYTIC GRAPHITE AS AFFECTED BY 
MICROSTRUCTURE AND BORON CONTENT 

ABSTRACT 

The strengths of pyrolytic graphites possessing four varieties of micro- 
structure ranging from coarse-coned singularly nucleated to fine-coned 
continuously nucleated were examined. The fine-coned structure gave substan- 
tially higher strengths.  Boron-doped pyrolytic graphite with percentages of 
boron varying from 0.2S to 3.3% were evaluated in terms of their modulus an' 
flexural strength. The higher boron content material (1 to 3.3% B) achieved 
strengths as much as fifty percent greater than the undoped material. 
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INTRODUCTION 

Pyrolytic graphite is considered one of the most promising materials 
for elevated temperature applications. As is the case with refractory metal 
oxides and carbides, the development of this material has been hampered by 
too few systematic investigations characterizing the microstructure and its 
effects on mechanical properties. Little work has been reported in the lit- 
erature on correlations between microstructure and mechanical properties. 

While the bulk of the past work has been directed at the utilization of 
the unique high-temperature strength and thermal properties of this material, 
the utilization of pyrolytic graphite at elevated temperature may be limited 
by its room temperature properties. As an example consider a pyrolytic graph- 
ite rocket nozzle. When the rocket is fired the stress impulse will reach 
the outside of the nozzle bef .-e it is at its operating temperature. To 
preclude premature failure of the nozzle, the material must be able to sustain 
the stress impulse at ambient temperature. This is a clear case of room tem- 
perature mechanical properties having the potential to limit the usefulness 
of a high-temperature material. For this reason, it was decided that a 
thorough study of the room temperature mechanical properties of pyrolytic 
graphite should be undertaken. 

It has been shown that the microstructure of pyrolytic graphite with 
respect to cone size exerts a strong influence on its flexural strength.1»2 

Microstructure features other than cone structure may influence the room 
temperature flexural strength and modulus of pyrolytic graphite. For instance, 
indirect evidence has suggested that the crystallite size* may correlate with 
these properties, and that the lamellar structure3 revealed by mercury ion 
bombardment etching may also be related to the mechanical properties. 

In addition to the effect of microstructure on the mechanical properties, 
the effect of boron additions was also studied since boron is known to con- 
tribute significantly to the strength of this material.** Recent advances in 
the technology of pyrolytic graphite production have made it possible to 
produce material substantially thicker than previously available deposits. 
Consequently, the results presented in this report represent one of the first 
evaluations of the mechanical properties of thick (1/4-inch) pyrolytic graphite. 

EXPERIMENTAL TECHNIQUES AND MATERIALS 

From previous experimental work5 it is well known that pyrolytic graphite 
is a highly anisotropic material, and that its strength properties in tension 
and compression vary considerably. To evaluate the strength-microstructure 
conditions for such an anisotropic material several testing techniques were 
considered. The uniaxial tensile test was eliminated due to the difficulty 
in obtaining true axial alignment between test specimen and testing machine. 
The flexural test was chosen since it negated any alignment problems and is 
fairly easy to conduct. 

^Private oormunioation - A, Tarpinian» 



In early tests in the evaluation of brittle materials, the three-point 
loading technique was used extensively. In this test a single load is applied 
to a flexural specimen supported at both ends. Analysis of this test shows 
that the maximum stress occurs at the point of load application. This point 
may not be representative of the material since there may be a critical 
Griffith crack6 in this area, causing the measured tensile strength to be in 
gross error. Recognizing the possibility of such an error, the four-point 
loading technique was chosen for material evaluation in this study. 

The four-point loading system simply consists of a bar of rectangular 
cross section, supported at both ends, and loaded so that the load and support 
points are equally spaced. The strength computed by this method provides a 
more representative value since the stress is measured over the area bounded 
by the load points. 

Strain measurement is accomplished through the use of resistance-type 
strain gages. Both tensile and compressive strains may be measured to give 
some indication of anisotropy within the material. 

The stress in the longitudinal fibers may be computed from the conven- 
tional flexural formula o^ ■ Mc/I where ot ■ tensile stress in the bottom 
fibers, I ■ moment of Inertia of the cross section, M « external moment 
applied to the beam, and c ■ one half the depth of the rectangular cross 
section. 

Duckworth7 has proposed that a relationship between stress and strain 
on both the compression and tensile sides of the neutral axis, combined with 
the equations from the strain diagram, will permit computation of the dis- 
tribution of longitudinal stress along the y axis. It is commonly accepted 
that in most ceramic bodies the strain is a simple linear function of stress. 
This is true only at low temperatures since, if the material undergoes plastic 
deformation, the stress-strain relation will not be linear. 

Assuming a linear stress-strain relationship with the slope different 
in tension than in compression, 

0t/et " 0xt/cxf 

0c/Ec ■ 0xc/exc' 

where oc and ot are unit stresses in top and bottom longitudinal fibers ob- 
tained from the accompanying strain diagram and cc and ct are the unit strains. 
The form of the strain diagram for a cross section of the gage length during 
bending would be Iv 
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where ct and ec are the unit strains in bottom and top longitudinal fibers 
at a distance y from the neutral axis. 

Assuming a linear stress-strain relationship with the slope different 
in tension than in compression. 
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From Equation 3, and the strain diagram 
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Replacing h and h with unit strains from (1) and (2) 
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Equation 8 gives the unit tensile stress in the bottom fibers of the flexural 
specimen. Similarly, (9) gives the unit compressive stress in the top longi- 
tudinal fibers. 

The external moment, dimensions of the cross section of the gage length, 
and the unit strain in the top and bottom fibers must be known for the com- 
putations.    All these quantities can be measured with considerable accuracy. 
For comparison with the conventional modulus-of-rupture formula ot ■ Mz/Zz, 
where Zz ■ bd2/6 and ot « 3M2(ct ♦ cc)/et and 

Mz  •    t        c 

c   t 
The factor —jjr—* therefore, is a correction factor to account for any dif- 
ferences between moduli of elasticity in tension and in compression. 

The above relationships were utilized in a computer program to analyze 
the load-strain data obtained from an Instron Testing Machine and the strain 
instrumentation. 

The four-point bend tests were performed on material machined fron the 
flat plates with the major axis of the specimen parallel to the deposition 
plane; in each case the tension surface corresponded to the deposition surface. 
Figure 1 illustrates the specimen dimensions, orientation, and loading con- 
figuration. The load was applied through an Instron Testing Machine, with a 
speed of 0.002 inch per minute maintained throughout all tests. 
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Specimen F.gure  1.   LOADING CONFIGURATION 
FOR  FLEXURAL TESTING OF 
PYROLYTIC GRAPHITE 

To measure strain, electrical resistance strain ganes were mounted on 
the tensile and conpressivc faces of the specimen; the specimen was loaded 
in increments of ten pounds and the strain monitored for each load. Strain 
observations indicate a linear stress-strain relationship for this material. 
Typical stress-strain curves are shown in Figure 2. 

The material used in this investigation was commercially available from 
a graphite producer. The "undoped" pyrolytic graphites were all deposited 
at 2000 C, Other deposition parameters were varied to provide the various 
cone structures shown in Figures 3a to 3c, The boron-doped materials were 
all deposited at 1850 C and had boron contents ranging from 0 to 3.2%, 
There is no apparent change in cone structure with boron content. The boron 
contents were the nominal compositions provided by the producer and a spec- 
tographic analysis of the material was provided, A variance of as much as 
±0,2% B from the nominal is possible. 

Typical microstructures of the various types of pyrolytic graphite tested 
are shown in Figures 3a to 3d, These microstructures are of the highly regen- 
erative type with the degree of coarseness varying between Figutes 3a, b, and 
c. Figure 3d shows the typical microstructure of the boron-doped pyrolytic 
graphite, which is singularly nucleated coarse-coned material. This structure 
is of a finer texture within the primary growth cone than the previous struc- 
tures and was deposited at a lower temperatue, 1850 C (vs. 2000 C for the 
undoped). Figure 3d is also typical of the undoped samples deposited at 1850 C. 

TEST DATA AND RESULTS 

Undoped Pyrolytic Graphite 

The stress-strain curves obtained from the Duckworth analysis7 of the load 
elongation data are presented in Figure 2. The moduli shown on these figures 
were from a least-squares analysis of the first 12 data points on the stress- 
strain curve including the point 0, 0 in each case. By limiting the least- 
square analysis to the first 12 points, it was assumed that the effect of any 
delamination on the modulus would be minimized. The values of E (Young's 
Modulus) on some of the curves do not seem to agree with the slope of the full 
curve. The strengths of the various types of pyrolytic graphite are compared 
in Table I. They are calculated from simple beam theory with no correction 
for a shift in the neutral axis. In Figure 3b the type A-3 microstructure is 
shown to have a finer primary growth cone structure. These results compare 
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favorably with the data of Donadio and Pappis1  who also found that continuously 
nucleated material had a hipher strength.    It should be noted that the size 
effect* so often encountered in brittle materials is rather large for pyrolytic 
graphite,    A previous  investigator1 used a bern 0,15 x 0,15 inch in cross sec- 
tion (0,0225 sq.   in,)  whereas this study used a 0.25 x 0,375  inch cross  section 
(0,09375 sq,  in,).    Thus,  if no size effect were operative, it would be expected 
that the larger specimens might carry four times the stress that the smaller 
specimens could carry.    However, the larger specimens were actually one third 
weaker than the smaller ones, 18 to 14 ksi versus 24 to 18 ksi, respectively. 
This large size effect  is probably due to the increase in residual stresses, 
delaminations, and microcracks one encounters in the thicker deposits superim- 
posed on the normally expected purely geometric size effect, 

A typical fracture for the undoped pyrolytic graphite is  shown in Figure 4, 
It  can be seen that the fracture occurs at the primary growth cone boundaries. 
The undoped specimens  fractured along shear planes,  i,e,, approximately 45 de- 
grees to the major axis of the flexure specimen, with the fracture path pre- 
ferring the growth cone boundaries. 

The values of Young's Modulus of 
the undoped pyrolytic graphites  tested 
in this study are presented in Table I, 
For this material it is evident  that 
the higher strength materials at a 
given deposition temperature have a 
higher flexural modulus.    However, 
either deposition temperature or micro- 
structure, or both, cause the singularly 
nucleated material deposited at  1850 C 
to have the highest modulus.    There is 
not the same relationship between micro- 
structure and modulus as there is 
between microstructurc and strength. 
It is also apparent that the value of 
F is higher in tension than in compres- 
sion.    These values are the average of 
4 to 5 specimens and in each group one 
or two specimens had the opposite be- 
havior,  that  is,  F was higher in com- 
pression.    This variation in behavior 
between specimens is most  likely the 
result of delaminations or microcracks 
in the material relieving  local  stresses 
near the strain gages. 

Boronated Pyrolytic Graphite 

The second phase of this program 
was to determine the effect of boron 

Figure 4.  FRACTURE IN TYPE F3  PYROLYTIC 
GRAPHITE.   Mag. SOX, polar.red light.  Typical of 
all fractures of undoped pyrolytic graphite deposited 
at 2000 C.   Note fracture occurring at primary growth 
cone boundary. 

*The size effect states that as one increases the diameter of the test piece 
the strength trill decrease.    The effect is usually rationalized on the basis 
of Griffith's crack theory. 

9 



Table I.    FLEXURAL STRENGTH AND MODULUS OF 
PYROLYTIC GRAPHITE MICROSTRUCTURES 

Type of 
|  Structure 

Tensile 
Strength, 

ksi 
Error, 
ksi 

YOUHR'S Modulus,  psi 
Tension Compression | 

A3 
F3 

i           Al 
Coarse cone 
1850 C Dep. 

18.07 
16.98 
14.55 

14.270 

±2.2 
±1.9 
±2.0 

±1.5 

3.81 x 10"6 

3.70 
3.17 

5.55 

3.45 x lO-6 1 
3.15                1 
2.71 

5.37 

doping on the strength of the pyrolytic graphite.    Flexural specinens were cut 
from plates  containing boron percentages varying fron 0.25 to 3.3.    Data from 
these tests plotted in Figure 5 indicate that the maximum strength occurs when 
the boron content is  in the area of 1,0% to 3,0%,    A slight drop in strength 
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Figur« 5.   FLEXURAL STRENGTH OF  BORONATED  PYROLYTIC GRAPHITE VERSUS 
BORON CONTENT  IN WEIGHT  PERCENT 

is encountered at 3.3% boron.    One phenomenon noted with the boron-doped mate- 
rial with 0,5% to 0.75% boron was that the strength decreased significantly. 
Additional  specimens were tested from the 0,5% boron material  to confirm this 
effect.    Strength increases of as much as 50 percent were obtained with the 
higher boron content material   (2,3% B) over the undoped material.    The stress- 
strain curves for the boron content material are shown in Figures  2a through e 
together with tb'   average elastic modulus.    The strain gage data indicates that 
the stress-strain curves are linear.    Table II presents data on the average 
strength and average modulus. 

10 
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Table II.    FLEXURAL STRENGTH AND MODULUS OF 
BORONATED PYROLYTIC GRAPHITE 

Flexural Strength 
Boron, 

% 
in Tension, 

psi 
Modulus, psi 

Tension Compression 

0 14.270 5.55 x lO"6 5.37 x lO"6 

0.25 15,080 -- mm 

0.50 11,600 8.04 8.11 
0.75 12,650 mm -- 

1.00 20,750 4.00 4.51 
1.30 22,000 4,45 5.03 
2.3 23,800 4.52 4.86 
3.3 21,200 4.57 4.75 

Fracture behavior of the boron-doped material was different than that of 
the undoped material.    These specimens developed shear delaminations parallel 
to the deposition planes or "a" direction.    Due to these delaminations,   full 
fracture into two or more separate pieces was seldom encountered in the boron- 
doped material.    The strengths of these specimens were calculated from the 
maximum load rather than load at fracture. 

The average modulus of the boronated pyrolytic graphites was higher for 
all boron compositions in compression rather than in tension.    This  is particu- 
larly interesting since from Table I it can be seen that if no boron is present 
the moduli are higher in tension.    No explanation for this behavior is offered, 
other than to speculate that such behavior may be  'elated to the presence of 
B^C deposit (and the resultant lattice strains)  recently suggested as a mech- 
anism to explain the effect of boron on the fine raicrostructure of pyrolytic 
graphite.8 

SUWARY 

The strength of undoped pyrolytic graphite may be varied according to the 
microstructure of the material. The finer cone structure material yields sig- 
nificantly higher strengths than the coarse structure material. 

By the addition of boron to the pyrolytic graphite during deposition, 
further increase in strength may be realized.    The highest strength  is obtained 
when the boron content ranges between 1.0 and 3.0%.     increases  in strength of 
as much as fifty percent over undoped material are noted with the addition of 
the above amount of boron. 

Fracture  in the undoped material occurs primarily along the cone boundary, 
and in the boron-doped material fracture occurs as shear along the basal planes. 

A larjie size effect is encountered in undoped pyrolytic graphite which 
results  in a severe degradation in the  flexural strength as the specimen thick- 
ness increases. 

11 
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Moduli of elasticity measured in flexure in pyrolytic graphite vary with 
the nature of the stress.    In the case of undoped material the average modulus 
is greater in tension, whereas doping causes the modulus in compression to be 
higher.    It has also been shown that the relationship between microstructure 
and modulus is not as direct as between microstructure and strength. 

12 
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